Separable integer partition (SIP) classes
George E. Andrews (Pennsylvania State University)
Abstract: Three of the most classical and well-known identities in the theory of partitions concern: (1) the generating function for $p(n)$ (Euler); (2) the generating function for partitions into distinct parts (Euler), and (3) the generating function for partitions in which parts differ by at least 2 (Rogers-Ramanujan). The lovely, simple argument used to produce the relevant generating functions is mostly never seen again. Actually, there is a very general theorem here which we shall present. We then apply it to prove two familiar theorems; (1) G\" ollnitz-Gordon, and (2) Schur 1926. We also consider an example where the series representation for the partitions in question is new. We close with an application to "partitions with n copies of n."
number theory
Audience: researchers in the topic
Combinatorial and additive number theory (CANT 2021)
Series comments: This is the nineteenth in a series of annual workshops sponsored by the New York Number Theory Seminar on problems in combinatorial and additive number theory and related parts of mathematics.
Registration for the conference is free. Register at cant2021.eventbrite.com.
The conference website is www.theoryofnumbers.com/cant/ Lectures will be broadcast on Zoom. The Zoom login will be emailed daily to everyone who has registered on eventbrite. To join the meeting, you may need to download the free software from www.zoom.us.
The conference program, list of speakers, and abstracts are posted on the external website.
| Organizer: | Mel Nathanson* |
| *contact for this listing |
